Đề cương ôn tập học kì II môn Toán Lớp 7 - Năm học 2019-2020 - Trường THCS Long Thành

A/ LÝ THUYẾT:

I. Phần đại số:

1/ Thống kê:

- Nắm vững lý thuyết thống kê (SGK)

- Nắm vững công thức tính Trung bình cộng của dấu hiệu.

- Biết vẽ biểu đồ đoạn thẳng, biểu đồ hình cột.

2/ Đơn thức và đa thức:

- Đơn thức là gì? Hệ số, bậc của đơn thức?

- Thế nào là các đơn thức đồng dạng ?

- Nhân hai đơn thức?

- Đa thức là gì? Biết thu gọn một đa thức?

- Bậc của đa thức? 

- Cộng trừ các đa thức nhiều biến?

3/ Đa thức một biến:

- Thu gọn đa thức một biến?

- Sắp xếp đa thức một biến theo lũy thừa giảm dần, lũy thừa tăng dần?

- Cộng trừ các đa thức một biến đã được sắp xếp?

- Bậc của đa thức một biến?

- Nghiệm của đa thức một biến là gì? Biết tìm nghiệm của đa thức một biến.

doc 6 trang Khánh Hội 15/05/2023 2340
Bạn đang xem tài liệu "Đề cương ôn tập học kì II môn Toán Lớp 7 - Năm học 2019-2020 - Trường THCS Long Thành", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Đề cương ôn tập học kì II môn Toán Lớp 7 - Năm học 2019-2020 - Trường THCS Long Thành

Đề cương ôn tập học kì II môn Toán Lớp 7 - Năm học 2019-2020 - Trường THCS Long Thành
ĐỀ CƯƠNG ÔN TẬP TOÁN 7 – HKII
NĂM HỌC 2019-2020
A/ LÝ THUYẾT:
I. Phần đại số:
1/ Thống kê:
- Nắm vững lý thuyết thống kê (SGK)
- Nắm vững công thức tính Trung bình cộng của dấu hiệu.
- Biết vẽ biểu đồ đoạn thẳng, biểu đồ hình cột.
2/ Đơn thức và đa thức:
- Đơn thức là gì? Hệ số, bậc của đơn thức?
- Thế nào là các đơn thức đồng dạng ?
- Nhân hai đơn thức?
- Đa thức là gì? Biết thu gọn một đa thức?
- Bậc của đa thức? 
- Cộng trừ các đa thức nhiều biến?
3/ Đa thức một biến:
- Thu gọn đa thức một biến?
- Sắp xếp đa thức một biến theo lũy thừa giảm dần, lũy thừa tăng dần?
- Cộng trừ các đa thức một biến đã được sắp xếp?
- Bậc của đa thức một biến?
- Nghiệm của đa thức một biến là gì? Biết tìm nghiệm của đa thức một biến.
II. Phần hình học:
- Nắm vững các trường hợp bằng nhau của hai tam giác, hai tam giác vuông?
- Định lý Pytago.
- Bất đẳng thức tam giác.
- Tính chất các đường đồng qui (đường trung tuyến, đường phân giác, đường trung trực, đường cao)
B/ PHẦN BÀI TẬP:
I. Phần đại số:
1/ Bài tập thống kê:
Bài 1 Điểm kiểm tra môn toán học kỳ 2 của học sinh lớp 7A được thống kê như sau.
10
9
10
9
9
9
8
9
9
10
9
10
10
7
8
10
8
9
8
9
9
8
10
8
8
9
7
9
10
9
 a) Dấu hiệu ở đây là gì ? có bao nhiêu giá trị của dấu hiệu ?
 b) Lập bảng tần số. 
 c) Tính số trung bình cộng của dấu hiệu 
Bài 2: Điểm kiểm tra môn toán học kì II của 40 học sinh lớp 7A được ghi lại trong bảng sau :
3
6
8
4
8
10
6
7
6
9
6
8
9
6
10
9
9
8
4
8
8
7
9
7
8
6
6
7
5
10
8
8
7
6
9
7
10
5
8
9
a. Lập bảng tần số .
b. Tính số trung bình cộng và tìm mốt của dấu hiệu .
Bài 3:
Thời gian làm một bài toán ( tính bằng phút) của 30 học sinh được ghi lại như sau :
10	5	8	8	9	7	8	9	14	8
5	7	8	10	9	8	10	7	14	8
9	8	9	9	9	9	10	5	5	14
Lập bảng tần số. Nhận xét	
b) Tính điểm trung bình cộng. Tìm mốt của dấu hiệu
Bài 4	Điểm kiểm tra học kỳ I môn Toán của học sinh lớp 7A thầy giáo đã ghi lại như sau:
5 6 6 7 5 4 7 8 8 9
4 9 10 8 7 6 9 8 6 10
9 6 5 7 9 8 6 6 7 9
a/ Tính số trung bình cộng về điểm kiểm tra học kỳ I của lớp 7A ?	
b/ Vẽ biểu đồ đoạn thẳng ?
Bài 5: Số lượng khách đến tham quan một cuộc triển lãm tranh trong 10 ngày được ghi trong bảng sau:
Số thứ tự ngày
1
2
3
4
5
6
7
8
9
10
Số lượng khách
300
350
300
280
250
350
300
400
300
250
a/ Dấu hiệu ở đây là gì ? 	b/ Lập bảng tần số ?. 	 c/ Tính lượng khách trung bình đến trong 10 ngày đó ? 
Bài 6:Số cân nặng của 30 bạn (tính tròn đến kg) trong một lớp được ghi lại như sau:
32 36 30 32 32 36 28 30 31 28
30 28 32 36 45 30 31 30 36 32
32 30 32 31 45 30 31 31 32 31
a. Dấu hiệu ở đây là gì?	b. Lập bảng “tần số”. 	c. Tính số trung bình cộng.
2/ Biểu thức đại số:
Bài 1: Cho hai đa thức : 
a) Sắp xếp các đa thức theo lũy thừa giảm dần của biến. 
b) Tính A(x) + B(x)
c) Tính A(x) – B(x)
Bài 2 Cho đơn thức: A = 
a) Thu gọn A, tìm bậc của đơn thức A thu được. 
b) Tính giá trị của đơn thức thu được tại x = -1; y = -1 	
Bài 3 Cho hai đa thức P(x) = 2x3 – 2x + x2 – x3 + 3x + 2
 	và 	 Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1 
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến .
b. Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x)	c. Chứng tỏ đa thức M(x) không có nghiệm .
Bài 4	Cho đơn thức P = 
a) thu gọn đơn thức P rồi xác định hệ số, phần biến cà bậc của đơn thức.
b) Tính giá trị của P tại x = 3 và y = 
Bài 5 Cho hai đa thức : 	A(x) = 9 – x5 + 4x – 2x3 + x2 – 7x4
	 	B(x) = x5 – 9 + 2x2 + 7 x4 + 2x3 – 3x 
Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
Tính A(x) + B(x) và A(x) – B(x) 
Bài 6 Cho đa thức M = 3x5y3 - 4x4y3 + 2x4y3 + 7xy2 - 3x5y3 
	a/ Thu gọn đa thức M và tìm bậc của đa thức vừa tìm được?
	b/ Tính giá trị của đa thức M tại x = 1 và y = - 1 ?
Bài 7	 Cho hai đa thức: 	P(x) = 8x5 + 7x - 6x2 - 3x5 + 2x2 + 15
	 Q(x) = 4x5 + 3x - 2x2 + x5 - 2x2 + 8
	a/ Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến ?
	b/ Tìm nghiệm của đa thức P(x) – Q(x) ?
Bài 8 Cho hai đa thức: P() = ; Q() = 
	a. Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm của biến.
	 b. Tính P() + Q() và P() – Q().
Bài 9 Tìm hệ số a của đa thức M() = a + 5 – 3, biết rằng đa thức này có một nghiệm là .
Bài 10 Cho đa thức M = 6 x6y + x4y3 – y7 – 4x4y3 + 10 – 5x6y + 2y7 – 2,5.
a) Thu gọn và tìm bậc của đa thức.
b) Tính giá trị của đa thức tại x = -1 và y = 1.
Bài 11 Cho hai đa thức :
 và 
a) Thu gọn hai đa thức P(x) và Q(x) 
b) Tìm đa thức M(x) = P(x) + Q(x). c) Tìm nghiệm của đa thức M(x).
Bài 12 Cho đa thức P(x) = x6 + 3 – x – 2x2 – x5
Sắp xếp các hạng tử của P(x) theo luỹ thừa giảm dần của biến x ?	
Tính P(1) ?
c) Có nhận xét gì về giá trị x = 1 đối với đa thức P(x) ?
Bài 13 Cho các đa thức :
 P(x)=; Q(x) = 
 a/ Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm của biến.
 b/ Tính P(x) + Q(x)
II. Phần hình học:
Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI
 a/ Chứng minh :∆ DEI = ∆DFI
 b/ Các góc DIE và góc DIF là những góc gì ?
 c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.
Bài 2 Cho tam giác ABC vuông ở A, có = 300 , AHBC (HBC). Trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE AD. Chứng minh :
a)Tam giác ABD là tam giác đều .
b)AH = CE.
c)EH // AC .
Bài 3 Cho DABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho
 AD =AC
Chứng minh tam giác ABC vuông	
Chứng minh DBCD cân
Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC 
Bài 4: Cho ABC cân tại A, vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.
a) Chứng minh BH =HC.	
b) Tính độ dài BH, AH.
c) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng A, G, H thẳng hàng. 
d) Chứng minh
Bài 5. Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K Î CA); từ K kẻ 
KE ^ AB tại E.
a) Tính AB. 	
b) Chứng minh BC = BE.
c) Tia BC cắt tia EK tại M. So sánh KM và KE.	
d) Chứng minh CE // MA
Bài 6: Cho vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng: 
a) = . 	
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC.	
d) AE < EC.
Bài 7Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.
Chứng minh: BH = HC.	
Tính độ dài đoạn AH.
Gọi G là trọng tâm ABC. Trên tia AG lấy điểm D sao cho AG = GD. Tia CG cắt AB tại F. Chứng minh: .
Chứng minh: DB + DG > AB.
Bài 8 	Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. 
 Vẽ KH vuông góc với BC tại H và cắt AC tại E. 
a/ Vẽ hình và ghi GT – KL ?	
b/ KH = AC	
c/ BE là tia phân giác của góc ABC ?	
d/ AE < EC ?
Bài 9 Cho D ABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :
a) D BNC = DCMB	 
b) D BKC cân tại K	
c) 	MN // BC
Bài 10 Cho ABC cân tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho DM=BM
a. Chứng minh BMC = DMA. Suy ra AD // BC.	
b. Chứng minh ACD là tam giác cân.
c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE. 
Bài 11 Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 10cm, BC = 12cm.
a) Chứng minh tam giác ABH bằng tam giác ACH.
b) Tính độ dài đoạn thẳng AH.
c) Gọi G là trọng tâm của tam giác ABC. Chứng minh ba điểm A, G, H thẳng hàng.
III. Bài tập nâng cao:
Bài 1 	a. Xác định a để nghiệm của đa thức f() = 2x - 4 cũng là nghiệm của đa thức g(x) = x2 -ax + 2
b. Cho f(x) = ax3 + bx2 + cx + d, trong đó a,b,c,d là hằng số và thỏa mãn : 
 b = 3a + c. Chứng tỏ rằng : f(1) = f(-2)
Bài 2 	a) Tìm nghiệm của đa thức x2 – 4 
b) Tìm nghiệm của đa thức sau : 2x2 – x 
Bài 3 a/ Tìm nghiệm của đa thức sau: x - x2 
	b/ Cho bảng tần số sau: 
Giá trị (x)
6
7
8
9
Tần số (n)
3
6
x
4
N = ?
	Biết . Tìm x ở bảng trên ?
Bài 4: 	a) Tìm hệ số a của đa thức P() = ax3 + 42 – 1, biết rằng đa thức này có một nghiệm là 2.
b) Cho f(x) = x8 – 101x7 + 101x6 – 101x5 +..+ 101x2 – 101x + 25. Tính f(100)?
Bài 5: Tìm hệ số a của đa thức M() = a + 5 – 3, biết rằng đa thức này có một nghiệm là .
Bài 6. 	* Cho đa thức P(x) = mx2 + 2mx – 3 có nghiệm x = - 1. Tìm m.
* Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng P(-1).P(-2) ≤ 0 biết rằng 5a - 3b + 2c = 0
Bài 7: Tìm nghiệm của đa thức P(x)=( x- 1)(2x+3)
Bài 8: Chứng minh đa thức Q(x) = x4 +3x2 +1 không có nghiệm với mọi giá trị của x .
Bài 9: 	Tìm nghiệm của đa thức : 
 	 Tìm nghiệm của đa thức : 
Một số đề mẫu
ĐỀ 1
Bài 1: (2 điểm) 
Điểm kiểm tra môn Toán của một nhóm học sinh được thống kê bằng bảng sau:
7
9
7
9
10
9
7
8
9
7
8
8
9
8
8
8
7
10
8
10
a) Dấu hiệu cần quan tâm là gì? 	b) Lập bảng tần số và nhận xét.
c) Tìm số trung bình điểm kiểm tra của cả lớp. Tìm mốt của dấu hiệu.
Bài 2: (2 điểm)
	Cho đa thức: A = –4x5y3 + x4y3 – 3x2y3z2 + 4x5y3 – x4y3 + x2y3z2 – 2y4
	a) Thu gọn rồi tìm bậc của đa thức A.
	b) Tìm đa thức B, biết rằng: B – 2x2y3z2 + y4 –x4y3 = A
Bài 3: (2 điểm)
	Cho hai đa thức: P(x) = –3x2 + x + và Q(x) = –3x2 + 2x – 2
	a) Tính: P(–1) và Q
	b) Tìm nghiệm của đa thức P(x) – Q(x)
Bài 4: Cho DABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a) Chứng minh AE là phân giác góc CAB
b) Chứng minh AD là trung trực của CD
c) So sánh CD và BC
d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.
ĐỀ 2
Bài 1: (2 đ) Điểm kiểm tra môn toán HKII của các em học sinh lớp 7A được ghi lại trong bảng sau:
8
7
5
6
6
4
5
2
6
3
7
2
3
7
6
5
5
6
7
8
6
5
8
10
7
6
9
2
10
9
Dấu hiệu là gì? Lớp 7A có bao nhiêu học sinh?
Lập bảng tần số và tìm mốt của dấu hiệu
Tính điểm thi trung bình môn toán của lớp 7A 
Bài 2: (3 đ)
Cho hai đơn thức sau
P(x) = 5x5 + 3x – 4x4 – 2x3 + 6 + 4x2
Q(x) = 2x4 – x + 3x2 – 2x3 + - x5
Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến?
Tính P(x) – Q(x)
Chứng tỏ x = -1 là nghiệm của P(x) nhưng không là nghiệm của Q(x)
Tính giá trị của P(x) – Q(x) tại x = -1
Bài 3: (1 đ) Tìm nghiệm của các đa thức sau
2x – 5
 x ( 2x + 2)
Bài 4: (4 đ)
Cho tam giác ABC có BC = 2AB. Gọi M là trung điểm của BC, N là trung điểm của BM. Trên tia đối của tia NA lấy điểm E sao cho AN = EN. Chứng minh:
tam giác NAB = tam giác NEM	( 1 đ)
Tam giác MAB là tam giác cân	( 1 đ)
M là trọng tâm của tam giác AEC	( 1 đ)
AB > AN	( 1 đ)
ĐỀ 3
Bài 1 :  (2 điểm)  Tuổi nghề của một số công nhân trong một phân xưởng (tính theo năm) được ghi lại theo bảng sau :        
            1          8          4          3          4          1          2          6          9          7
            3          4          2          6          10        2          3          8          4          3
            5          7          3          7          8          6          6          7          5          4
            2          5          7          5          9          5          1          5          2          1
a) Dấu hiệu  ở đây là gì ?  Số các giá trị khác nhau của dấu hiệu .
b) Lập bảng tần số  .  Tính  số  trung bình cộng.
Bài 2 :  (1 điểm) Thu gọn đơn thức sau, tìm bậc và tính giá trị của biểu thức tại x = 2 và y = –1 
                                  ½ x2 y(–½ x3 y)3 (–2 x2 )2
Bài 3 :  (2 điểm)  Cho hai đa thức  :   A(x)  = 2 x3 + 5 + x2 –3 x –5x3 –4                       
                                                                 B(x)  = –3x4 – x3 + 2x2 + 2x + x4 – 4–x2 .
a) Thu gọn 2 đa thức trên.
b)  Tính  H(x) = A(x) – B(x)  
Bài 4 : (1 điểm)  Xác  định hệ số m  để  đa thức  f(x)  =  mx2 + 2x + 16  có nghiệm là  – 2 .
Bài 5: (4 điểm)  Cho DABC có AB = 3 cm; AC = 5 cm; BC = 4 cm.
Chứng tỏ tam giác ABC vuông tại B.
Vẽ phân giác AD ( D thuộc BC). Từ D, vẽ DE ^ AC ( E Î AC). Chứng minh 
DB = DE.
ED cắt AB tại F. Chứng minh DBDF = DEDC rồi suy ra DF > DE.
Chứng minh AB + BC > DE + AC.
Giáo viên biên soạn
Nguyễn Hữu Thọ

File đính kèm:

  • docde_cuong_on_tap_hoc_ki_ii_mon_toan_lop_7_nam_hoc_2019_2020_t.doc